Time scale symplectic systems without normality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00015384" target="_blank" >RIV/00216224:14310/06:00015384 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Time scale symplectic systems without normality
Original language description
We present a theory of the definiteness (nonnegativity and positivity) of a quadratic functional F over a bounded time scale. The results are given in terms of a time scale symplectic system (S), which is a time scale linear system that generalizes and unifies the linear Hamiltonian differential system and discrete symplectic system. The novelty of this paper resides in removing the assumption of normality in the characterization of the positivity of F, and in establishing equivalent conditions for thenonnegativity of F without any normality assumption. To reach this goal, a new notion of generalized focal points for conjoined bases (X,U) of (S) is introduced, results on the piecewise-constant kernel of X(t) are obtained, and various Picone-type identities are derived under the piecewise-constant kernel condition. The results of this paper generalize and unify recent ones in each of the discrete and continuous time setting, and constitute a keystone for further development in this the
Czech name
Symplektické systémy na time scales bez předpokladu normality
Czech description
Prezentujeme teorii definitnosti (nezápornosti a pozitivity) kvadratického funkcionálu F na ohraničeném "time scale". Výsledky jsou dány pomocí symplektického systému (S), což je lineární systém na time scale, který zobecňuje a sjednocuje lineární Hamiltonovský systém a diskrétní symplektický systém. Nový přístup této práce spočívá v odstranění předpokladu normality v charakterizaci pozitivity F a v odvození ekvivalentních podmínek pro nezápornost F bez předpokladu normality. Pro dosažení tohoto cíle představujeme nový pojem zobecněného fokálního bodu pro izotropické báze (X,U) systému (S) a odvozujeme výsledky týkající se po částech konstantního jádra X(t), či různých identit Piconeho typu za předpokladu po částech konstantního jádra. Výsledky tohoto článku zobecňují a sjednocují nedávné výsledky a představují základní kameny pro další rozvoj této teorie.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
230
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
140-173
UT code for WoS article
—
EID of the result in the Scopus database
—