All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pure morphisms in pro-categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00017023" target="_blank" >RIV/00216224:14310/06:00017023 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/06:00124025

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pure morphisms in pro-categories

  • Original language description

    Dydak and del Portal have recently studied pure monomorphisms and pure epimorphisms in accessible categories with a motivation in shape theory. The present paper improves their results.

  • Czech name

    Čisté morfismy v pro-kategoriích

  • Czech description

    Dydak a del Portal nedávno studovali čisté monomorfismy a čisté epimorfismy s motivací v teorii tvarů. Tento článek jejich výsledky vylepšuje.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

  • Volume of the periodical

    207

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    17

  • Pages from-to

    19-35

  • UT code for WoS article

  • EID of the result in the Scopus database