All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

"Lock and key" recognition in the world of protein-RNA interactions: How ADAR2 binds RNA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00018577" target="_blank" >RIV/00216224:14310/06:00018577 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    "Lock and key" recognition in the world of protein-RNA interactions: How ADAR2 binds RNA

  • Original language description

    The association of RNA-binding proteins with RNA transcript begins during transcription. Some of these early-binding proteins remain bound to RNA until it is degraded whereas others recognize and transiently bind to RNA during its maturation for specificprocesses such as splicing, processing, transport and localization. Some RNA-binding proteins function as RNA chaperones by helping the RNA, which is initially single-stranded, to form various secondary and tertiary structures. When folded these structured RNAs together with specific RNA sequences act as a signal for gene regulation. Adenosine deaminase that acts on RNA (ADAR) is a gene regulator that site-selectively modifies adenosines to inosines within RNA transcripts, thereby recoding genomic information. ADAR selects its substrate for deamination through recognition of certain double-helical irregularities within folded RNA transcript. This recognition is mediated using double-stranded RNA-binding motifs (dsRBMs) of ADAR. It will

  • Czech name

    "Lock and key" recognition in the world of protein-RNA interactions: How ADAR2 binds RNA

  • Czech description

    The association of RNA-binding proteins with RNA transcript begins during transcription. Some of these early-binding proteins remain bound to RNA until it is degraded whereas others recognize and transiently bind to RNA during its maturation for specificprocesses such as splicing, processing, transport and localization. Some RNA-binding proteins function as RNA chaperones by helping the RNA, which is initially single-stranded, to form various secondary and tertiary structures. When folded these structured RNAs together with specific RNA sequences act as a signal for gene regulation. Adenosine deaminase that acts on RNA (ADAR) is a gene regulator that site-selectively modifies adenosines to inosines within RNA transcripts, thereby recoding genomic information. ADAR selects its substrate for deamination through recognition of certain double-helical irregularities within folded RNA transcript. This recognition is mediated using double-stranded RNA-binding motifs (dsRBMs) of ADAR. It will

Classification

  • Type

    A - Audiovisual production

  • CEP classification

    CE - Biochemistry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

  • Place of publication

    USA

  • Publisher/client name

    xxx

  • Version

    xxx

  • Carrier ID

    N/A