Generalized Kahler manifolds and off-shell supersymmetry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F07%3A00021758" target="_blank" >RIV/00216224:14310/07:00021758 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized Kahler manifolds and off-shell supersymmetry
Original language description
We solve the long standing problem of finding an off-shell supersymmetric formulation for a general N = (2, 2) nonlinear two dimensional sigma model. Geometrically the problem is equivalent to proving the existence of special coordinates; these correspond to particular superfields that allow for a superspace description. We construct and explain the geometric significance of the generalized Kahler potential for any generalized Kahler manifold; this potential is the superspace Lagrangian.
Czech name
Zobecneni Kahlerovske variety a neslupkove supersymetrie
Czech description
Vyresime dlouho existujici problem najiti neslupkove supersymetricke popis pro obecne N=(2,2) supersymetricke nelinearni sigma model. Geometricky ten problem je ekvivalentni s tim dokazat existence specialni souradnice; tyto souradnice odpovidaji superpole ktere umoznuje popis v superprostoru. Vytvorime a vysvetlujeme geometricky vyznam zobecneni Kahlerovskeho potentialu pro libovolny zobecneni Kahlerovsky varieta; potentialem je lagrangian v superprostoru.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BF - Elementary particle theory and high energy physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME%20649" target="_blank" >ME 649: Non-comutative theory of field and projective superspace.</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
2007
Issue of the periodical within the volume
269
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
833-849
UT code for WoS article
—
EID of the result in the Scopus database
—