All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GC Content in Plant Genomes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F07%3A00022323" target="_blank" >RIV/00216224:14310/07:00022323 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    GC Content in Plant Genomes

  • Original language description

    GC base pair content is an important character in the description of new taxa of prokaryotes, but its role in plant systematics and evolution is still poorly understood. Although GC content is positively correlated with genome size in bacteria and vertebrates (1) there is debate about how those two factors are related in plants. Barow and Meister (2) estimated base composition and genome size in 54 taxa of angiosperms and gymnosperms, and their findings did not support Vinogradov (1) proposition statingthat there is a positive correlation between GC content and genome size. More recently, Barow and Meister (3) confirmed that base composition and genome size were not correlated using an expanded sampling of 215 plant species measured by numerous authors over the last 14 years. Using flow cytometry methods (FCM) with PI and DAPI, we estimated base composition in closely related species of Apiaceae (16 spp.), Brassicaceae (30 spp.), Cyperaceae (135 spp.), Onagraceae (15 spp.), Poaceae (1

  • Czech name

    GCbsah v rostlinných genomech

  • Czech description

    GC base pair content is an important character in the description of new taxa of prokaryotes, but its role in plant systematics and evolution is still poorly understood. Although GC content is positively correlated with genome size in bacteria and vertebrates (1) there is debate about how those two factors are related in plants. Barow and Meister (2) estimated base composition and genome size in 54 taxa of angiosperms and gymnosperms, and their findings did not support Vinogradov (1) proposition statingthat there is a positive correlation between GC content and genome size. More recently, Barow and Meister (3) confirmed that base composition and genome size were not correlated using an expanded sampling of 215 plant species measured by numerous authors over the last 14 years. Using flow cytometry methods (FCM) with PI and DAPI, we estimated base composition in closely related species of Apiaceae (16 spp.), Brassicaceae (30 spp.), Cyperaceae (135 spp.), Onagraceae (15 spp.), Poaceae (1

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    EF - Botany

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06073" target="_blank" >LC06073: Biodiversity Research Center</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Analytical Cytometry IV

  • ISBN

    978-80-239-9591-6

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    19-20

  • Publisher name

    Czech Society for Analytical Cytometry

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jun 23, 2007

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article