Generalized models and local invariants of Kohn-Nirenberg domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00024798" target="_blank" >RIV/00216224:14310/08:00024798 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized models and local invariants of Kohn-Nirenberg domains
Original language description
The main obstruction for constructing holomorphic reproducing kernels of Cauchy type on weakly pseudoconvex domains is the Kohn-Nirenberg phenomenon, i.e., nonexistence of supporting functions and local nonconvexifiability. This paper gives an explicit verifiable characterization of weakly pseudoconvex but locally nonconvexifiable hypersurfaces of finite type in dimension two. It is expressed in terms of a generalized model, which captures local geometry of the hypersurface both in the complex tangential and nontangential directions. As an application we obtain a new class of nonconvexifiable pseudoconvex hypersurfaces with convex models.
Czech name
Zobecněné modely a lokální invarianty Kohn-Nirenbergových oblastí
Czech description
článek dává explicitní ověřitelnou charakterizaci slabě pseudokonvexních, ale nekonvexifikovatelných nadploch v komplexní dimenzi dvě. Hlavním nástrojem jsou zobecněné modelové plochy, které zachycují lokální geometrii jak ve v
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F2117" target="_blank" >GA201/05/2117: Algebraic methods in topology and geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Matematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
259
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
—
UT code for WoS article
000254261200004
EID of the result in the Scopus database
—