Plug-in method for nonparametric regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00025551" target="_blank" >RIV/00216224:14310/08:00025551 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Plug-in method for nonparametric regression
Original language description
The problem of bandwidth selection for non-parametric kernel regression is considered. We will follow the Nadaraya -- Watson and local linear estimator especially. The circular design is assumed in this work to avoid the difficulties caused by boundary effects. Most of bandwidth selectors are based on the residual sum of squares (RSS). It is often observed in simulation studies that these selectors are biased toward undersmoothing. This leads to consideration of a procedure which stabilizes the RSS by modifying the periodogram of the observations. As a result of this procedure, we obtain an estimation of unknown parameters of average mean square error function (AMSE). This process is known as a plug-in method. Simulation studies suggest that the plug-in method could have preferable properties to the classical one.
Czech name
Plug-in metoda pro neparametrickou regresi
Czech description
Zabýváme se zde problémem hledání optimální šířky okna při neparametrických jádrových odhadech regresní funkce. Speciálně uvažujeme Nadaraya - Watsonovy a lokálně lineární odhady. Předpokládá se zde také cyklický model kvůli potlačení hraničních efektů.Většina metod pro hledání optimální šířky okna vychází z residuálního součtu čtverců (RSS). Často se však stává, že dochází k tzv. podhlazování. V této práci uvažujeme novou proceduru, která stabilizje RSS modifikací periodogramu pozorování. Jako výsledek této procedury dostáváme odhady neznámých parametrů střední kvadratické chyby. Tento proces je obecně znám jako plug-in metoda. Simulační studie ukazuje, že navrhovaná metoda dává lepší výsledky než klasické metody.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06024" target="_blank" >LC06024: Jaroslav Hájek Center for Theoretical and Applied Statistics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Statistics
ISSN
0943-4062
e-ISSN
—
Volume of the periodical
2008
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
—
UT code for WoS article
000252294000004
EID of the result in the Scopus database
—