Trigonometric and hyperbolic systems on time scales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00028575" target="_blank" >RIV/00216224:14310/09:00028575 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Trigonometric and hyperbolic systems on time scales
Original language description
In this paper we discuss trigonometric and hyperbolic systems on time scales. These systems generalize and unify their corresponding continuous-time and discrete-time analogies, namely the systems known in the literature as trigonometric and hyperbolic linear Hamiltonian systems and discrete symplectic systems. We provide time scale matrix definitions of the usual trigonometric and hyperbolic functions and show that many identities known from the basic calculus extend to this general setting, includingthe time scale differentiation of these functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Dynamic Systems and Applications
ISSN
1056-2176
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
3-4
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
—
UT code for WoS article
000270520600009
EID of the result in the Scopus database
—