Polynomial Operators on Classes of Regular Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00029620" target="_blank" >RIV/00216224:14310/09:00029620 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Polynomial Operators on Classes of Regular Languages
Original language description
We assign to each positive variety V and each natural number k the class of all (positive) Boolean combinations of the restricted polynomials, i.e. the languages of the form L_0a_1 L_1a_2... a_l L_l, where a_i are letters and L_i are languages from the variety V and l is less or equal to k. For this polynomial operator we give a certain algebraic counterpart which works with identities satisfied by syntactic (ordered) monoids of languages considered. We also characterize the property that a variety of languages is generated by a finite number of languages. We apply our constructions to particular examples of varieties of languages which are crucial for a certain famous open problem concerning concatenation hierarchies.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebraic Informatics
ISBN
978-3-642-03563-0
ISSN
0302-9743
e-ISSN
—
Number of pages
18
Pages from-to
—
Publisher name
Springer-Verlag
Place of publication
Berlin Heidelberg (Germany)
Event location
Thessaloniki, Greece
Event date
Jan 1, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000272343200017