Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00043526" target="_blank" >RIV/00216224:14310/10:00043526 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
Original language description
Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state omega on E, which is subadditive.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIGMA
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
003
Country of publishing house
UA - UKRAINE
Number of pages
9
Pages from-to
—
UT code for WoS article
000273562500003
EID of the result in the Scopus database
—