What are sifted colimits?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00044113" target="_blank" >RIV/00216224:14310/10:00044113 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What are sifted colimits?
Original language description
Sifted colimits are ``almost'' just the combination of filtered colimits and reflexive coequalizers. For example, a functor with a finitely cocomplete domain preserves sifted colimits iff it preserves filtered colimits and reflexive coequalizers. But forgeneral domains that statement is not true.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—