Which O-commutative Basic Algebras Are Effect Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00046451" target="_blank" >RIV/00216224:14310/10:00046451 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Which O-commutative Basic Algebras Are Effect Algebras
Original language description
By a basic algebra is meant an MV-like algebra (A,+,neg,0) of type (2, 1, 0) derived in a natural way from bounded lattices having antitone involutions on their principal filters. We show that (i) atomic Archimedean basic algebras for which the operation+ is o-commutative are effect algebras and (ii) atomic Archimedean commutative basic algebras are MV-algebras. This generalizes the results by Botur and Halas on finite commutative basic algebras and complete commutative basic algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
12
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
—
UT code for WoS article
000284335300030
EID of the result in the Scopus database
—