Holonomy groups of pseudo-quaternionic-Kählerian manifolds of non-zero scalar curvature
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00049658" target="_blank" >RIV/00216224:14310/11:00049658 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Holonomy groups of pseudo-quaternionic-Kählerian manifolds of non-zero scalar curvature
Original language description
The holonomy group $G$ of a pseudo-quaternionic-K"ahlerian manifold of signature $(4r,4s)$ with non-zero scalar curvature is contained in $Sp(1)cdotSp(r,s)$ and it contains $Sp(1)$. It is proved that either $G$ is irreducible, or $s=r$ and $G$ preserves an isotropic subspace of dimension $4r$, in the last case, there are only two possibilities for the connected component of the identity of such $G$. This gives the classification of possible connected holonomy groups of pseudo-quaternionic-K"ahlerian manifolds of non-zero scalar curvature.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GD201%2F09%2FH012" target="_blank" >GD201/09/H012: Algebraic and geometric methods and structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Global Analysis and Geometry
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
99-105
UT code for WoS article
—
EID of the result in the Scopus database
—