A routhe to Routh -- the classical setting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00049726" target="_blank" >RIV/00216224:14310/11:00049726 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S1402925111001180" target="_blank" >http://dx.doi.org/10.1142/S1402925111001180</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1402925111001180" target="_blank" >10.1142/S1402925111001180</a>
Alternative languages
Result language
angličtina
Original language name
A routhe to Routh -- the classical setting
Original language description
There is a well known principle in classical mechanic stating that a variational problem independent of a configuration space variable $w$ (so called cyclic variable), but dependent on its velocity $w'$ can be expressed without both $w$ and $w'$. This principle is known as the Routh reduction. In this paper we start to develop a purely geometric approach to this reduction. We do not limit ourselves to rather special problems of mechanics and in a certain sense we are able to obtain explicit formulae forthe reduced variational integral.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0469" target="_blank" >GA201/08/0469: Oscillatory and asymptotic properties of solutions of differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nonlinear Mathematical Physic
ISSN
1402-9251
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
21
Pages from-to
87-107
UT code for WoS article
000289173100007
EID of the result in the Scopus database
—