Artificial Neural Networks for Classification in Metabolomic Studies of Whole Cells Using H-1 Nuclear Magnetic Resonance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00081755" target="_blank" >RIV/00216224:14310/11:00081755 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1155/2011/158094" target="_blank" >http://dx.doi.org/10.1155/2011/158094</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2011/158094" target="_blank" >10.1155/2011/158094</a>
Alternative languages
Result language
angličtina
Original language name
Artificial Neural Networks for Classification in Metabolomic Studies of Whole Cells Using H-1 Nuclear Magnetic Resonance
Original language description
We report the successful classification, by artificial neural networks (ANNs), of H-1 NMR spectroscopic data recorded on whole-cell culture samples of four different lung carcinoma cell lines, which display different drug resistance patterns. The robustness of the approach was demonstrated by its ability to classify the cell line correctly in 100% of cases, despite the demonstrated presence of operator-induced sources of variation, and irrespective of which spectra are used for training and for validation. The study demonstrates the potential of ANN for lung carcinoma classification in realistic situations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CB - Analytical chemistry, separation
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06035" target="_blank" >LC06035: Centre of Biophysical Chemistry, Bioelectrochemistry and Bioanalysis. New Tools for Genomics, Proteomics and Biomedicine.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Biomedicine and Biotechnology
ISSN
1110-7243
e-ISSN
—
Volume of the periodical
"Neuveden"
Issue of the periodical within the volume
—
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
"nestrankovano"
UT code for WoS article
000283224200001
EID of the result in the Scopus database
—