Regular and extremal solutions for difference equations with generalized phi-Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057661" target="_blank" >RIV/00216224:14310/12:00057661 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/10236198.2010.515589" target="_blank" >http://dx.doi.org/10.1080/10236198.2010.515589</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2010.515589" target="_blank" >10.1080/10236198.2010.515589</a>
Alternative languages
Result language
angličtina
Original language name
Regular and extremal solutions for difference equations with generalized phi-Laplacian
Original language description
Non-oscillatory solutions for second-order difference equations with generalized phi-Laplacian are studied. Solutions are classified according to the asymptotic behaviour as regular or extremal solutions. Their existence and possible coexistence are investigated as well. In particular, the existence of infinitely many extremal solutions for equations with the discrete mean curvature operator is proved by means of an iterative method. This paper is completed by examples and some open problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J. Difference Equ. Appl.
ISSN
1023-6198
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
815-831
UT code for WoS article
000303988600004
EID of the result in the Scopus database
—