Dynamic effect algebras and their representations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00062906" target="_blank" >RIV/00216224:14310/12:00062906 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/12:33145905
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-012-0857-x" target="_blank" >http://dx.doi.org/10.1007/s00500-012-0857-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-012-0857-x" target="_blank" >10.1007/s00500-012-0857-x</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic effect algebras and their representations
Original language description
For lattice effect algebras, the so-called tense operators were already introduced by Chajda and KolaA (TM) ik. Tense operators express the quantifiers "it is always going to be the case that" and "it has always been the case that" and hence enable us toexpress the dimension of time in the logic of quantum mechanics. We present an axiomatization of these tense operators and prove that in every effect algebra can be introduced tense operators which, for non-complete lattice effect algebras, can be onlypartial mappings. An effect algebra equipped with tense operators reflects changes of quantum events from past to future. A crucial problem concerning tense operators is their representation. Having an effect algebra with tense operators, we can ask if there exists a frame such that each of these operators can be obtained by our construction. We solve this problem for (strict) dynamic effect algebras having a full set of homorphisms into a complete lattice effect algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft computing
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
1733-1741
UT code for WoS article
000308532700009
EID of the result in the Scopus database
—