Intervals on weakly ordered partial commutative groups of linear operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00067542" target="_blank" >RIV/00216224:14310/12:00067542 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Intervals on weakly ordered partial commutative groups of linear operators
Original language description
The generalized effect algebra was presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on Hilbert space with the usual sum of operators. A structure ofthe set of not only positive linear operators can be described with the notion of weakly ordered partial commutative group (wop-group). With a restriction of the usual sum, the important subset of all self-adjoint operators forms a substructure of the set of all linear operators. We investigate the properties of intervals in wop-groups of linear operators and showing that they can be organised into effect algebras with nonempty set of states.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Quantitative Logic and Soft Computing: Proceedings of the QL&SC 2012, Xian, China 12-15 May 2012
ISBN
9814401528
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
693-701
Publisher name
World Scientific Publishing Company, 2012
Place of publication
Shaanxi Normal University, China
Event location
Xian, China
Event date
May 12, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—