All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A triplectic bi-Darboux theorem and para-hypercomplex geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00073377" target="_blank" >RIV/00216224:14310/12:00073377 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4759501" target="_blank" >http://dx.doi.org/10.1063/1.4759501</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4759501" target="_blank" >10.1063/1.4759501</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A triplectic bi-Darboux theorem and para-hypercomplex geometry

  • Original language description

    We provide necessary and sufficient conditions for a bi-Darboux Theorem on triplectic manifolds. Here triplectic manifolds are manifolds equipped with two compatible, jointly non-degenerate Poisson brackets with mutually involutive Casimirs, and with ranks equal to 2/3 of the manifold dimension. By definition bi-Darboux coordinates are common Darboux coordinates for two Poisson brackets. We discuss both the Grassmann-even and the Grassmann-odd Poisson bracket case. Odd triplectic manifolds are, e.g., relevant for Sp(2)-symmetric field-antifield formulation. We demonstrate a one-to-one correspondence between triplectic manifolds and para-hypercomplex manifolds. Existence of bi-Darboux coordinates on the triplectic side of the correspondence translates into a flat Obata connection on the para-hypercomplex side.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    1-25

  • UT code for WoS article

    000312832800048

  • EID of the result in the Scopus database