A triplectic bi-Darboux theorem and para-hypercomplex geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00073377" target="_blank" >RIV/00216224:14310/12:00073377 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4759501" target="_blank" >http://dx.doi.org/10.1063/1.4759501</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4759501" target="_blank" >10.1063/1.4759501</a>
Alternative languages
Result language
angličtina
Original language name
A triplectic bi-Darboux theorem and para-hypercomplex geometry
Original language description
We provide necessary and sufficient conditions for a bi-Darboux Theorem on triplectic manifolds. Here triplectic manifolds are manifolds equipped with two compatible, jointly non-degenerate Poisson brackets with mutually involutive Casimirs, and with ranks equal to 2/3 of the manifold dimension. By definition bi-Darboux coordinates are common Darboux coordinates for two Poisson brackets. We discuss both the Grassmann-even and the Grassmann-odd Poisson bracket case. Odd triplectic manifolds are, e.g., relevant for Sp(2)-symmetric field-antifield formulation. We demonstrate a one-to-one correspondence between triplectic manifolds and para-hypercomplex manifolds. Existence of bi-Darboux coordinates on the triplectic side of the correspondence translates into a flat Obata connection on the para-hypercomplex side.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000312832800048
EID of the result in the Scopus database
—