Spectral and oscillation theory for general second order Sturm-Liouville difference equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00073382" target="_blank" >RIV/00216224:14310/12:00073382 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/1687-1847-2012-82" target="_blank" >http://dx.doi.org/10.1186/1687-1847-2012-82</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-1847-2012-82" target="_blank" >10.1186/1687-1847-2012-82</a>
Alternative languages
Result language
angličtina
Original language name
Spectral and oscillation theory for general second order Sturm-Liouville difference equations
Original language description
In this paper we establish an oscillation theorem for second order Sturm-Liouville difference equations with general nonlinear dependence on the spectral parameter lambda. This nonlinear dependence on lambda is allowed both in the leading coefficient andin the potential. We extend the traditional notions of eigenvalues and eigenfunctions to this more general setting. Our main result generalizes the recently obtained oscillation theorem for second order Sturm-Liouville difference equations, in which theleading coefficient is constant in lambda. Problems with Dirichlet boundary conditions as well as with variable endpoints are considered.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Difference Equations
ISSN
1687-1847
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
82
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
1-19
UT code for WoS article
000307971600001
EID of the result in the Scopus database
—