Holonomy algebras of pseudo-hyper-Kählerian manifolds of index 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066089" target="_blank" >RIV/00216224:14310/13:00066089 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.difgeo.2012.11.001" target="_blank" >http://dx.doi.org/10.1016/j.difgeo.2012.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2012.11.001" target="_blank" >10.1016/j.difgeo.2012.11.001</a>
Alternative languages
Result language
angličtina
Original language name
Holonomy algebras of pseudo-hyper-Kählerian manifolds of index 4
Original language description
The holonomy algebra of a pseudo-hyper-Kählerian manifold of signature (4,4n+4) is a subalgebra of sp(1,n+1). Possible holonomy algebras of these manifolds are classified. Using this, a new proof of the classification of simply connected pseudo-hyper-Kählerian symmetric spaces of index 4 is obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
284-299
UT code for WoS article
000317448000010
EID of the result in the Scopus database
—