Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066248" target="_blank" >RIV/00216224:14310/13:00066248 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/1687-1847-2013-232" target="_blank" >http://dx.doi.org/10.1186/1687-1847-2013-232</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-1847-2013-232" target="_blank" >10.1186/1687-1847-2013-232</a>
Alternative languages
Result language
angličtina
Original language name
Weyl disks and square summable solutions for discrete symplectic systems with jointly varying endpoints
Original language description
In this paper we develop the spectral theory for discrete symplectic systems with general jointly varying endpoints. This theory includes a characterization of the eigenvalues, construction of the M-lambda function and Weyl disks, their matrix radii andcenters, statements about the number of square summable solutions, and limit point or limit circle analysis. These results are new even in some particular cases, such as for the periodic and antiperiodic endpoints, or for discrete symplectic systems withspecial linear dependence on the spectral parameter. The method utilizes a new transformation to separated endpoints, which is simpler and more transparent than the one in the known literature.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Difference Equations
ISSN
1687-1847
e-ISSN
—
Volume of the periodical
2013
Issue of the periodical within the volume
232
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
1-18
UT code for WoS article
000324372800002
EID of the result in the Scopus database
—