All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Full bandwidth matrix selectors for gradient kernel density estimate

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00067353" target="_blank" >RIV/00216224:14310/13:00067353 - isvavai.cz</a>

  • Alternative codes found

    RIV/60162694:G42__/13:00477756

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.csda.2012.07.006" target="_blank" >http://dx.doi.org/10.1016/j.csda.2012.07.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csda.2012.07.006" target="_blank" >10.1016/j.csda.2012.07.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Full bandwidth matrix selectors for gradient kernel density estimate

  • Original language description

    The most important factor in a multivariate kernel density estimation is a~choice of a bandwidth matrix. Because of its role in controlling both the amount and the direction of multivariate smoothing, this choice is a particularly important. Considerableattention has been paid to constrained parameterization of the bandwidth matrix such as a diagonal matrix or pre-transformation of the data. General multivariate kernel density derivative estimators has been investigated in paper Chac'on, Test, p. 375--398, Vol. 19, 2011. The present paper is focused on data-driven selectors of full bandwidth matrices for a density and its gradient. This method is based on an optimally balanced relation between integrated variance and integrated squared bias. The analysis of statistical properties shows the rationale of the proposed method. It is also given the relative rate of convergence to compare the method with cross-validation and plug-in methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06024" target="_blank" >LC06024: Jaroslav Hájek Center for Theoretical and Applied Statistics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Statistics & Data Analysis

  • ISSN

    0167-9473

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    364-376

  • UT code for WoS article

    000310403700027

  • EID of the result in the Scopus database