Homogeneous orthocomplete effect algebras are covered by MV-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00067637" target="_blank" >RIV/00216224:14310/13:00067637 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2012.07.009" target="_blank" >http://dx.doi.org/10.1016/j.fss.2012.07.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2012.07.009" target="_blank" >10.1016/j.fss.2012.07.009</a>
Alternative languages
Result language
angličtina
Original language name
Homogeneous orthocomplete effect algebras are covered by MV-algebras
Original language description
The aim of our paper is twofold. First, we thoroughly study the sets of meager and hypermeager elements. Second, we study a common generalization of orthocomplete and lattice effect algebras. We show that every block of an Archimedean homogeneous effectalgebra satisfying this generalization is lattice ordered. Hence such effect algebras can be covered by ranges of observables. As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is lattice ordered. Therefore finitehomogeneous effect algebras are covered by MV-algebras. (C) 2012 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
210
Issue of the periodical within the volume
1 January 2013
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
89-101
UT code for WoS article
000310662400007
EID of the result in the Scopus database
—