Reversibility of computations in graph-walking automata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00069382" target="_blank" >RIV/00216224:14310/13:00069382 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-40313-2_53" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40313-2_53</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40313-2_53" target="_blank" >10.1007/978-3-642-40313-2_53</a>
Alternative languages
Result language
angličtina
Original language name
Reversibility of computations in graph-walking automata
Original language description
The paper proposes a general notation for deterministic automata traversing finite undirected structures: the graph-walking automata. This abstract notion covers such models as two-way finite automata, including their multi-tape and multi-head variants,tree-walking automata and their extension with pebbles, picture-walking automata, space-bounded Turing machines, etc. It is then demonstrated that every graph-walking automaton can be transformed to an equivalent reversible graph-walking automaton, so that every step of its computation is logically reversible. This is done with a linear blow-up in the number of states, where the linear factor depends on the degree of graphs being traversed. The construction directly applies to all basic models covered by this abstract notion.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematical Foundations of Computer Science 2013
ISBN
9783642403125
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
595-606
Publisher name
Springer
Place of publication
Berlin
Event location
Klosterneuburg, Austria
Event date
Jan 1, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—