Nano-modification of surfaces using low-cost ambient air diffuse plasma
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00070340" target="_blank" >RIV/00216224:14310/13:00070340 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nano-modification of surfaces using low-cost ambient air diffuse plasma
Original language description
. The results indicate that plasma treatment governs the treated surfaces by polar hydrophilic oxygen-based groups and reduces the amount of carbon contaminants. These processes led to higher surface energy and therefore to higher adhesion between applied coatings and plasma treated substrate. Since the DCSBD plasma may operate in various atmospheric conditions, from low-cost ambient air up to various combinations of different carrier gasses (N2, Ar, He) mixed with monomers (plasma enhanced CVD); the DCSBD treatment may be used to achieve various chemistry of . The results indicate that plasma treatment governs the treated surfaces by polar hydrophilic oxygen-based groups and reduces the amount of carbon contaminants. These processes led to higher surface energy and therefore to higher adhesion between applied coatings and plasma treated substrate.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BL - Plasma physics and discharge through gases
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Employment of Newly Graduated Doctors of Science for Scientific Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů