Artificial neural networks in online semiautomated pest discriminability: an applied case with 2 Thrips species
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00074854" target="_blank" >RIV/00216224:14310/14:00074854 - isvavai.cz</a>
Result on the web
<a href="http://journals.tubitak.gov.tr/agriculture/" target="_blank" >http://journals.tubitak.gov.tr/agriculture/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3906/tar-1305-8" target="_blank" >10.3906/tar-1305-8</a>
Alternative languages
Result language
angličtina
Original language name
Artificial neural networks in online semiautomated pest discriminability: an applied case with 2 Thrips species
Original language description
We present a methodical paper based on ANN to discriminate morphologically very similar species, Thrips sambuci Heeger, 1854 and T. fuscipennis Haliday, 1836 (Thysanoptera: Thripinae), as an applied case for more general use. Statistical analysis of 17 characters, measured or determined for this 2 Thrips species (reared from larvae in our laboratories), including 15 quantitative morphometric variables, was performed to elucidate morphological plasticity, detect eventual outliers, and visualize differences between the studied taxa. The computational strategy applied in this study includes a set of statistical tools (factor analysis, correlation analysis, principal component analysis, and linear discriminant analysis). This complex approach has proven the existence of 2 separate species: T. fuscipennis and T. sambuci.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
EG - Zoology
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Turkish Journal of Agriculture and Forestry
ISSN
1300-011X
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
1
Country of publishing house
TR - TURKEY
Number of pages
14
Pages from-to
111-124
UT code for WoS article
000328624300013
EID of the result in the Scopus database
—