On fuzzification of topological categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00075362" target="_blank" >RIV/00216224:14310/14:00075362 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2013.05.003" target="_blank" >http://dx.doi.org/10.1016/j.fss.2013.05.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2013.05.003" target="_blank" >10.1016/j.fss.2013.05.003</a>
Alternative languages
Result language
angličtina
Original language name
On fuzzification of topological categories
Original language description
This paper shows that(L, M)-fuzzy topology of U. Höhle, T. Kubiak and A. Šostak is an instance of a general fuzzification procedure for topological categories, which amounts to the construction of a new topological category from a given one. This fuzzification procedure motivates a partial dualization of the machinery of tower extension of topological constructs of D. Zhang, thereby providing the procedure of tower extension of topological categories. With the help of this dualization, we arrive at themeta-mathematical result that the concept of(L, M)-fuzzy topology and the notion of approach space of R. Lowen are ?dual? to each other.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
238
Issue of the periodical within the volume
MARCH
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000331507500001
EID of the result in the Scopus database
—