Time scale symplectic systems with analytic dependence on spectral parameter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00080616" target="_blank" >RIV/00216224:14310/15:00080616 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/10236198.2014.997227" target="_blank" >http://dx.doi.org/10.1080/10236198.2014.997227</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2014.997227" target="_blank" >10.1080/10236198.2014.997227</a>
Alternative languages
Result language
angličtina
Original language name
Time scale symplectic systems with analytic dependence on spectral parameter
Original language description
This paper is devoted to the study of time scale symplectic systems with polynomial and analytic dependence on the complex spectral parameter lambda. We derive fundamental properties of these systems (including the Lagrange identity) and discuss their connection with systems known in the literature, in particular with linear Hamiltonian systems. In analogy with the linear dependence on lambda, we present a construction of the Weyl disks and determine the number of linearly independent square integrablesolutions. These results extend the discrete time theory considered recently by the authors. To our knowledge, in the continuous time case this concept is new. We also establish the invariance of the limit circle case for a special quadratic dependence on lambda and its extension to two (generally nonsymplectic) time scale systems, which yields new results also in the discrete case. The theory is illustrated by several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
209-239
UT code for WoS article
000350570500003
EID of the result in the Scopus database
—