Limit periodic homogeneous linear difference systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00080865" target="_blank" >RIV/00216224:14310/15:00080865 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2015.06.008" target="_blank" >http://dx.doi.org/10.1016/j.amc.2015.06.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.06.008" target="_blank" >10.1016/j.amc.2015.06.008</a>
Alternative languages
Result language
angličtina
Original language name
Limit periodic homogeneous linear difference systems
Original language description
We study limit periodic homogeneous linear difference systems, where the coefficient matrices belong to a bounded group. We find groups of matrices with the property that the systems, which do not possess any non-zero asymptotically almost periodic solution, form a dense subset in the space of all considered systems. Analogously, we analyse almost periodic systems as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
265
Issue of the periodical within the volume
August
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
958-972
UT code for WoS article
000358787100078
EID of the result in the Scopus database
—