On fixed points of the lower set operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00080942" target="_blank" >RIV/00216224:14310/15:00080942 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S021819671540010X" target="_blank" >http://dx.doi.org/10.1142/S021819671540010X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S021819671540010X" target="_blank" >10.1142/S021819671540010X</a>
Alternative languages
Result language
angličtina
Original language name
On fixed points of the lower set operator
Original language description
Lower subsets of an ordered semigroup form in a natural way an ordered semigroup. This lower set operator gives an analogue of the power operator already studied in semigroup theory. We present a complete description of the lower set operator applied tovarieties of ordered semigroups. We also obtain large families of fixed points for this operator applied to pseudovarieties of ordered semigroups, including all examples found in the literature. This is achieved by constructing six types of inequalitiesthat are preserved by the lower set operator. These types of inequalities are shown to be independent in a certain sense. Several applications are also presented, including the preservation of the period for a pseudovariety of ordered semigroups whose image under the lower set operator is proper.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Algebra and Computation
ISSN
0218-1967
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
1-2
Country of publishing house
SG - SINGAPORE
Number of pages
34
Pages from-to
259-292
UT code for WoS article
000351747900011
EID of the result in the Scopus database
—