Oscillation criterion for discrete trigonometric systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00081332" target="_blank" >RIV/00216224:14310/15:00081332 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/10236198.2015.1070842" target="_blank" >http://dx.doi.org/10.1080/10236198.2015.1070842</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2015.1070842" target="_blank" >10.1080/10236198.2015.1070842</a>
Alternative languages
Result language
angličtina
Original language name
Oscillation criterion for discrete trigonometric systems
Original language description
In this paper we investigate oscillation properties of discrete trigonometric systems whose coefficients matrices are simultaneously symplectic and orthogonal. The main result generalizes a necessary and sufficient condition of nonoscillation of trigonometric systems proved by M.~Bohner and O.~Dov{s}l'y (J. Differential Equations 163 (2000), 113--129) in the case when the block in the upper right corner of the coefficient matrix is symmetric and positive definite. Now we present this oscillation criterion for an arbitrary trigonometric system. The obtained results are applied to formulate a necessary and sufficient condition for nonoscillation of even-order Sturm-Liouville difference equations
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0768" target="_blank" >GAP201/11/0768: Qualitative properties of solutions of differential equations and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J. Difference Equ. Appl.
ISSN
1023-6198
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
1256-1276
UT code for WoS article
000366142700009
EID of the result in the Scopus database
—