All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A numerical strategy to discretize and solve the Poisson equation on dynamically adapted multiresolution grids for time-dependent streamer discharge simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00086125" target="_blank" >RIV/00216224:14310/15:00086125 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0021999115001084" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0021999115001084</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcp.2015.02.038" target="_blank" >10.1016/j.jcp.2015.02.038</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A numerical strategy to discretize and solve the Poisson equation on dynamically adapted multiresolution grids for time-dependent streamer discharge simulations

  • Original language description

    We develop a numerical strategy to solve multi-dimensional Poisson equations on dynamically adapted grids for evolutionary problems disclosing propagating fronts. The method is an extension of the multiresolution finite volume scheme used to solve hyperbolic and parabolic time-dependent PDEs. Such an approach guarantees a numerical solution of the Poisson equation within a user-defined accuracy tolerance. Most adaptive meshing approaches in the literature solve elliptic PDEs level-wise and hence at uniform resolution throughout the set of adapted grids. Here we introduce a numerical procedure to represent the elliptic operators on the adapted grid, strongly coupling inter-grid relations that guarantee the conservation and accuracy properties of multiresolution finite volume schemes. The discrete Poisson equation is solved at once over the entire computational domain as a completely separate process.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BL - Plasma physics and discharge through gases

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED2.1.00%2F03.0086" target="_blank" >ED2.1.00/03.0086: Regional R&D center for low-cost plasma and nanotechnology surface modifications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational Physics

  • ISSN

    0021-9991

  • e-ISSN

  • Volume of the periodical

    289

  • Issue of the periodical within the volume

    MAY

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    129-148

  • UT code for WoS article

    000351081000009

  • EID of the result in the Scopus database