Characterization of a category for monoidal topology
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00095795" target="_blank" >RIV/00216224:14310/15:00095795 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Characterization of a category for monoidal topology
Original language description
This paper characterizes one of the categories for monoidal topology of M. M. Clementino, D. Hofmann, G. J. Seal, and W. Tholen in terms of the Sierpinski object of E. G. Manes. In particular, we describe the categories of preordered sets and premetric spaces (in the sense of F. W. Lawvere) in terms of modules over a quantale.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
74
Issue of the periodical within the volume
3-4
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
389-410
UT code for WoS article
000361534400013
EID of the result in the Scopus database
2-s2.0-84942193983