BAUTIN BIFURCATION OF A MODIFIED GENERALIZED VAN DER POL-MATHIEU EQUATION
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00087831" target="_blank" >RIV/00216224:14310/16:00087831 - isvavai.cz</a>
Result on the web
<a href="http://emis.muni.cz/journals/AM/16-1/am2548.pdf" target="_blank" >http://emis.muni.cz/journals/AM/16-1/am2548.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
BAUTIN BIFURCATION OF A MODIFIED GENERALIZED VAN DER POL-MATHIEU EQUATION
Original language description
The modified generalized Van der Pol-Mathieu equation is generalization of the equation that is investigated by authors Momeni et al. (2007), Veerman and Verhulst (2009) and Kadeřábek (2012). In this article the Bautin bifurcation of the autonomous system associated with the modified generalized Van der Pol-Mathieu equation has been proved. The existence of limit cycles is studied and the Lyapunov quantities of the autonomous system associated with the modified Van der Pol-Mathieu equation are computed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0768" target="_blank" >GAP201/11/0768: Qualitative properties of solutions of differential equations and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
1212-5059
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
52
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
22
Pages from-to
49-70
UT code for WoS article
—
EID of the result in the Scopus database
—