Killing and twistor spinors with torsion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00094233" target="_blank" >RIV/00216224:14310/16:00094233 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10455-015-9483-z" target="_blank" >http://dx.doi.org/10.1007/s10455-015-9483-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10455-015-9483-z" target="_blank" >10.1007/s10455-015-9483-z</a>
Alternative languages
Result language
angličtina
Original language name
Killing and twistor spinors with torsion
Original language description
We study twistor spinors (with torsion) on Riemannian spin manifolds carrying metric connections with totally skew-symmetric torsion. We consider the characteristic connection and under the condition , we show that the twistor equation with torsion w.r.t. the family can be viewed as a parallelism condition under a suitable connection on the bundle , where is the associated spinor bundle. Consequently, we prove that a twistor spinor with torsion has isolated zero points. Next we study a special class of twistor spinors with torsion, namely these which are T-eigenspinors and parallel under the characteristic connection; we show that the existence of such a spinor for some implies that is both Einstein and -Einstein, in particular the equation holds for any . In fact, for -parallel spinors we provide a correspondence between the Killing spinor equation with torsion and the Riemannian Killing spinor equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-24642P" target="_blank" >GP14-24642P: Dirac operators with torsion and special geometric structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Global Analysis and Geometry
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
37
Pages from-to
105-141
UT code for WoS article
000371236200001
EID of the result in the Scopus database
—