Quantum potential in covariant quantum mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00094921" target="_blank" >RIV/00216224:14310/17:00094921 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0926224517300487" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0926224517300487</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2017.03.021" target="_blank" >10.1016/j.difgeo.2017.03.021</a>
Alternative languages
Result language
angličtina
Original language name
Quantum potential in covariant quantum mechanics
Original language description
We discuss several features of the classical quantum potential appearing in Covariant Quantum Mechanics. In particular, we compare the “observed potential” of the joined spacetime connection with the potential of the cosymplectic phase 2-form and with the potential of the upper quantum connection. Moreover, we discuss the distinguished observer and the distinguished timelike potential associated with a non-vanishing quantum section of the quantum bundle. We show that the above objects play a natural role in the context of the kinetic quantum momentum, of the quantum probability current, of the Schrödinger operator and of the classical fluid associated with a non-vanishing quantum section.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
1872-6984
Volume of the periodical
54
Issue of the periodical within the volume
October
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
175-193
UT code for WoS article
000412256400017
EID of the result in the Scopus database
2-s2.0-85017133951