Circular units of real abelian fields with four ramified primes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095073" target="_blank" >RIV/00216224:14310/17:00095073 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5817/AM2017-4-221" target="_blank" >http://dx.doi.org/10.5817/AM2017-4-221</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2017-4-221" target="_blank" >10.5817/AM2017-4-221</a>
Alternative languages
Result language
angličtina
Original language name
Circular units of real abelian fields with four ramified primes
Original language description
In this paper we study the groups of circular numbers and circular units in Sinnott's sense in real abelian fields with exactly four ramified primes under certain conditions. More specifically, we construct their Z-bases in five special infinite families of cases. We also derive some results about the corresponding module of relations (in one family of cases, we show that the module of Ennola relations is cyclic).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15785S" target="_blank" >GA15-15785S: The ideal class groups of abelian number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
1212-5059
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
32
Pages from-to
221-252
UT code for WoS article
000419967000003
EID of the result in the Scopus database
—