All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095500" target="_blank" >RIV/00216224:14310/17:00095500 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevA.96.053838" target="_blank" >http://dx.doi.org/10.1103/PhysRevA.96.053838</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevA.96.053838" target="_blank" >10.1103/PhysRevA.96.053838</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation

  • Original language description

    An absolute optical instrument is a region of space, typically defined by a spatially varying index of refraction, in which bound ray trajectories are closed. Traditional examples of such devices include Maxwell’s fisheye and the Eaton and Luneburg lenses. In this paper we employ the close analogy between classical mechanics and geometrical optics to develop a general theory of absolute instruments based on the Hamilton-Jacobi equation. Based on this theory, we derive many general properties of absolute instruments, and design a number of previously unknown examples. We also show how absolute optical instruments are related to superintegrable systems in mechanics and that the optical case is much less restrictive, which leads to an immense design space of absolute optical instruments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review A

  • ISSN

    2469-9926

  • e-ISSN

  • Volume of the periodical

    96

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000415671700017

  • EID of the result in the Scopus database