Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095500" target="_blank" >RIV/00216224:14310/17:00095500 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevA.96.053838" target="_blank" >http://dx.doi.org/10.1103/PhysRevA.96.053838</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.96.053838" target="_blank" >10.1103/PhysRevA.96.053838</a>
Alternative languages
Result language
angličtina
Original language name
Absolute optical instruments, classical superintegrability, and separability of the Hamilton-Jacobi equation
Original language description
An absolute optical instrument is a region of space, typically defined by a spatially varying index of refraction, in which bound ray trajectories are closed. Traditional examples of such devices include Maxwell’s fisheye and the Eaton and Luneburg lenses. In this paper we employ the close analogy between classical mechanics and geometrical optics to develop a general theory of absolute instruments based on the Hamilton-Jacobi equation. Based on this theory, we derive many general properties of absolute instruments, and design a number of previously unknown examples. We also show how absolute optical instruments are related to superintegrable systems in mechanics and that the optical case is much less restrictive, which leads to an immense design space of absolute optical instruments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
2469-9926
e-ISSN
—
Volume of the periodical
96
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000415671700017
EID of the result in the Scopus database
—