All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigation of cosolvent application to enhance POPs' mass transfer in partitioning passive sampling in sediment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095514" target="_blank" >RIV/00216224:14310/17:00095514 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs11356-017-0223-8" target="_blank" >https://link.springer.com/article/10.1007%2Fs11356-017-0223-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11356-017-0223-8" target="_blank" >10.1007/s11356-017-0223-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigation of cosolvent application to enhance POPs' mass transfer in partitioning passive sampling in sediment

  • Original language description

    The freely dissolved concentration of persistent organic pollutants (POPs) is one of the most important parameters for risk assessment in aquatic environments, due to its proportionality to the chemical activity. Chemical activity difference represents the driving force for a spontaneous contaminant transport, such as water-aquatic biota or water-sediment. Freely dissolved concentrations in sediment pore water can be estimated from the concentrations in a partition-based passive sampler equilibrated in suspensions of contaminated sediment. Equilibration in the sediment/passive sampler system is slow, since concentrations of most POPs in the water phase, which is the main route for mass transfer, are very low. Adding methanol to sediment in suspension increases the POPs' solubility and, consequently, the permeability in the water phase. The resulting higher aqueous concentrations enhance POPs mass transfer up to three times for investigated POPs (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides) and shorten equilibrium attainment to less than 6 weeks. The addition of methanol to the aqueous phase up to a molar fraction of 0.2 changed the POPs equilibrium distribution ratio between sediment and passive sampler by less than a factor of two. As a result, the pore water concentrations of POPs, calculated from their amounts accumulated in a passive sampler, are affected by methanol addition not more than by the same factor.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Science and Pollution Research

  • ISSN

    0944-1344

  • e-ISSN

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    35

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    27334-27344

  • UT code for WoS article

    000417545800038

  • EID of the result in the Scopus database