On some aspects of the Bohl transformation for Hamiltonian and symplectic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095593" target="_blank" >RIV/00216224:14310/17:00095593 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.10.015" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.10.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.10.015" target="_blank" >10.1016/j.jmaa.2016.10.015</a>
Alternative languages
Result language
angličtina
Original language name
On some aspects of the Bohl transformation for Hamiltonian and symplectic systems
Original language description
The classical Bohl transformation from 1906 concerns the second order linear differential equations and states, roughly speaking, that a pair of linearly independent solutions of a second order differential equation can be expressed via the sine and cosine functions. Since that time, this transformation has been extended in various directions and became e.g. the theoretical basis for the deeply developed transformation theory of second order linear differential equations. In our paper we discuss this transformation for linear Hamiltonian differential systems and discrete symplectic systems. We provide an alternative proofs to some know results and these new proofs enable to give a new insight into the topics. We also formulate some open problems associated with the discrete Bohl transformation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
448
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
281-292
UT code for WoS article
000392255700015
EID of the result in the Scopus database
—