Semirigid Systems of Three Equivalence Relations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00112620" target="_blank" >RIV/00216224:14310/17:00112620 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/pdf/1505.02955.pdf" target="_blank" >https://arxiv.org/pdf/1505.02955.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Semirigid Systems of Three Equivalence Relations
Original language description
A system M of equivalence relations on a set E is semirigid if only the identity and constant functions preserve all members of M. We construct semirigid systems of three equivalence relations. Our construction leads to the examples given by Zadori in 1983 and to many others and also extends to some infinite cardinalities. As a consequence, we show that on every set of at most continuum cardinality distinct from 2 and 4 there exists a semirigid system of three equivalence relations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING
ISSN
1542-3980
e-ISSN
1542-3999
Volume of the periodical
28
Issue of the periodical within the volume
4-5
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
511-535
UT code for WoS article
000400415500009
EID of the result in the Scopus database
2-s2.0-85018769786