Definable categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100780" target="_blank" >RIV/00216224:14310/18:00100780 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0022404917301251" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0022404917301251</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Definable categories
Original language description
We introduce the notion of a definable category--a category equivalent to a full subcategory of a locally finitely presentable category that is closed under products, directed colimits and pure subobjects. Definable subcategories are precisely the finite-injectivity classes. We prove a 2-duality between the 2-category of small exact categories and the 2-category of definable categories, and provide a new proof of its additive version. We further introduce a third vertex of the 2-category of regular toposes and show that the diagram of 2(anti-)equivalences between three 2-categories commutes; the corresponding additive triangle is well-known.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
—
Volume of the periodical
222
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
1006-1025
UT code for WoS article
000423247900002
EID of the result in the Scopus database
2-s2.0-85021146745