All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nanosecond imaging and emission spectroscopy of argon streamer micro-discharge developing in coplanar surface DBD

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101010" target="_blank" >RIV/00216224:14310/18:00101010 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389021:_____/18:00490430

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1361-6595/aac240" target="_blank" >http://dx.doi.org/10.1088/1361-6595/aac240</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/aac240" target="_blank" >10.1088/1361-6595/aac240</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nanosecond imaging and emission spectroscopy of argon streamer micro-discharge developing in coplanar surface DBD

  • Original language description

    Time-resolved microscopic ICCD images, emission waveforms and spectra of triggered single-surface coplanar dielectric barrier micro-discharges were acquired with nanosecond time resolution. The micro-discharges were produced in pure argon by applying periodic high-voltage waveforms to a pair of embedded metallic electrodes at atmospheric pressure, and microscopic images of single micro-discharge events complemented with spectrally resolved emission were acquired with a time resolution of a few nanoseconds. Due to the low jitter of the micro-discharge onset with respect to the high-voltage pulse, we succeeded in separating the very weak emission produced during the course of streamer formation from the emission produced during the transition between the streamer and the subsequent transient glow phase. We identified the characteristic spectrometric signatures of the transition between the streamer and glow phases by analysing the lines belonging to the Ar(3s(2)3p(5)4p -&gt; 3s(2)3p(5)4s) multiplet. By linking optical and electrical measurements, we estimated the electron density with a high temporal resolution. The electron densities of the streamer discharge, determined spectroscopically, were in the range of 10(19)-10(20) m(-3), while an estimate of 10(21) m(-3) was obtained using macroscopic electrical analysis combined with ICCD imaging. The evolution of selected population ratios of 2p levels during streamer evolution was determined for the first time, and this may be used in the future for advanced streamer diagnostics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLASMA SOURCES SCIENCE &amp; TECHNOLOGY

  • ISSN

    0963-0252

  • e-ISSN

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    1-19

  • UT code for WoS article

    000433514600001

  • EID of the result in the Scopus database

    2-s2.0-85048089803