All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate injectivity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101081" target="_blank" >RIV/00216224:14310/18:00101081 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10485-017-9510-2" target="_blank" >http://dx.doi.org/10.1007/s10485-017-9510-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10485-017-9510-2" target="_blank" >10.1007/s10485-017-9510-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate injectivity

  • Original language description

    In a locally $lambda$-presentable category, with $lambda$ a regular cardinal, classes of objects that are injective with respect to a family of morphisms whose domains and codomains are $lambda$-presentable, are known to be characterized by their closure under products, $lambda$-directed colimits and $lambda$-pure subobjects. Replacing the strict commutativity of diagrams by ``commutativity up to $eps$", this paper provides an ``approximate version" of this characterization for categories enriched over metric spaces. It entails a detailed discussion of the needed $eps$-generalizations of the notion of $lambda$-purity. The categorical theory is being applied to the locally $aleph_1$-presentable category of Banach spaces and their linear operators of norm at most 1, culminating in a largely categorical proof for the existence of the so-called Gurarii Banach space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Categorical Structures

  • ISSN

    0927-2852

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    18

  • Pages from-to

    699-716

  • UT code for WoS article

    000437673800006

  • EID of the result in the Scopus database

    2-s2.0-85038356732