Uniquely Complemented Posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101490" target="_blank" >RIV/00216224:14310/18:00101490 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/18:73590111
Result on the web
<a href="https://link.springer.com/article/10.1007/s11083-017-9440-5" target="_blank" >https://link.springer.com/article/10.1007/s11083-017-9440-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-017-9440-5" target="_blank" >10.1007/s11083-017-9440-5</a>
Alternative languages
Result language
angličtina
Original language name
Uniquely Complemented Posets
Original language description
We study complementation in bounded posets. It is known and easy to see that every complemented distributive poset is uniquely complemented. The converse statement is not valid, even for lattices. In the present paper we provide conditions that force a uniquely complemented poset to be distributive. For atomistic resp. atomic posets as well as for posets satisfying the descending chain condition we find sufficient conditions in the form of so-called LU-identities. It turns out that for finite posets these conditions are necessary and sufficient.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
ISSN
0167-8094
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
421-431
UT code for WoS article
000446503600002
EID of the result in the Scopus database
2-s2.0-85033474909