All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101685" target="_blank" >RIV/00216224:14310/18:00101685 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.ncbi.nlm.nih.gov/pubmed/29750188" target="_blank" >https://www.ncbi.nlm.nih.gov/pubmed/29750188</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1126/sciadv.aap7314" target="_blank" >10.1126/sciadv.aap7314</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs

  • Original language description

    Polycyclic aromatic hydrocarbons like benzo(a)pyrene (BaP) in atmospheric particulate matter pose a threat to human health because of their high carcinogenicity. In the atmosphere, BaP is mainly degraded through a multi-phase reaction with ozone, but the fate and atmospheric transport of BaP are poorly characterized. Earlier modeling studies used reaction rate coefficients determined in laboratory experiments at room temperature, which may overestimate/underestimate degradation rates when applied under atmospheric conditions. Moreover, the effects of diffusion on the particle bulk are not well constrained, leading to large discrepancies between model results and observations. We show how regional and global distributions and transport of BaP can be explained by a new kinetic scheme that provides a realistic description of the temperature and humidity dependence of phase state, diffusivity, and reactivity of BaP-containing particles. Low temperature and humidity can substantially increase the lifetime of BaP and enhance its atmospheric dispersion through both the planetary boundary layer and the free troposphere. The new scheme greatly improves the performance of multiscale models, leading to better agreement with observed BaP concentrations in both source regions and remote regions (Arctic), which cannot be achieved by less-elaborate degradation schemes (deviations by multiple orders of magnitude). Our results highlight the importance of considering temperature and humidity effects on both the phase state of aerosol particles and the chemical reactivity of particulate air pollutants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10700 - Other natural sciences

Result continuities

  • Project

    <a href="/en/project/GA16-11537S" target="_blank" >GA16-11537S: Transformation products of mono- and polyaromatic hydrocarbons in atmospheric aerosols – priority hazardous pollutants</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science advances

  • ISSN

    2375-2548

  • e-ISSN

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000431373300014

  • EID of the result in the Scopus database