Towards a pseudoequational proof theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00101744" target="_blank" >RIV/00216224:14310/18:00101744 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/PM/2012" target="_blank" >http://dx.doi.org/10.4171/PM/2012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/PM/2012" target="_blank" >10.4171/PM/2012</a>
Alternative languages
Result language
angličtina
Original language name
Towards a pseudoequational proof theory
Original language description
A new scheme for proving pseudoidentities from a given set Sigma of pseudoidentities, which is clearly sound, is also shown to be complete in many instances, such as when Sigma defines a locally finite variety, a pseudovariety of groups, more generally, of completely simple semigroups, or of commutative monoids. Many further examples for which the scheme is complete are given when Sigma defines a pseudovariety V which is sigma-reducible for the equation x=y, provided Sigma is enough to prove a basis of identities for the variety of sigma-algebras generated by V. This gives ample evidence in support of the conjecture that the proof scheme is complete in general.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-02862S" target="_blank" >GA15-02862S: Applications of Algebra and Combinatorics in Formal Language Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Portugaliae mathematica
ISSN
0032-5155
e-ISSN
—
Volume of the periodical
75
Issue of the periodical within the volume
2
Country of publishing house
PT - PORTUGAL
Number of pages
41
Pages from-to
79-119
UT code for WoS article
000452893900001
EID of the result in the Scopus database
2-s2.0-85058806006