All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00102894" target="_blank" >RIV/00216224:14310/18:00102894 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969717335234?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969717335234?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2017.12.098" target="_blank" >10.1016/j.scitotenv.2017.12.098</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils

  • Original language description

    This work addresses the effect of biochar amendment to soil on contaminant sorption, bioavailability, and ecotoxicity. A distinction between positive primary amendment effects caused by reduced toxicity resulting from contaminant sorption, and negative secondary amendment effects of the biochars themselves was seen. Two biochars (one from high technology and one from low technology production processes) representing real world biochars were tested for the adsorption of pyrene, polychlorinated biphenyl (PCB) 52), and dichlorodiphenyldichloroethylene (p,p'-DDE). Sorption by both biochars was similar, both for compounds in single and mixed isotherms, in the presence and absence of soil. p,p'-DDE natively contaminated and spiked soils were amended with biochar (0, 1, 5, and 10%) and bioavailability, operationally defined bioaccessibility and ecotoxicity were assessed using polyethylene (PE), polymeric resin (XAD) and Folsomia candida, respectively. At the highest biochar dose (10%), bioavailability and bioaccessibility decreased by &gt;37% and &gt;41%, respectively, compared to unamended soils. Mortality of F. candida was not observed at any biochar dose, while reproductive effects were dose dependent. F. candida benefited from the reduction of p,p'-DDE bioavailability upon 1% and 5% biochar addition to contaminated soils while at 10% dose, these positive effects were nullified by biochar-induced toxicity. p,p'-DDE toxicity corrected for such secondary effects was predicted well by both PE uptake and XAD extraction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/LM2015051" target="_blank" >LM2015051: Research Centre for Toxic Compounds in the Environment</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

  • Volume of the periodical

    624

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    78-86

  • UT code for WoS article

    000426355900010

  • EID of the result in the Scopus database

    2-s2.0-85037974720