Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00102901" target="_blank" >RIV/00216224:14310/18:00102901 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0269749117346523?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0269749117346523?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envpol.2018.02.013" target="_blank" >10.1016/j.envpol.2018.02.013</a>
Alternative languages
Result language
angličtina
Original language name
Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair
Original language description
The temporal and spatial trends in sediment of 22 poly- and perfluorinated (PFAS) compounds were investigated in the southern Great Lakes Erie and Ontario as well as Lake St. Clair. Surface concentrations measured by Ponar grab samples indicated a trend for greater concentrations near to urban sites. Mean concentrations Sigma(22)PFAS were 15.6, 18.2 and 19 ng g(-1) dm for Lakes St. Clair, Erie and Ontario, respectively. Perfluoro-n-butanoic acid (PFBA) and Perfluoro-n-hexanoic acid (PFHxA) were frequently determined in surface sediment and upper core samples indicating a shift in use patterns. Where PFBA was identified it was at relatively great concentrations typically >10 ng g(-1) dm. However as PFBA and PFHxA are less likely to bind to sediment they may be indicative of pore water concentrations Sedimentation rates between Lake Erie and Lake Ontario differ greatly with greater rates observed in Lake Erie. In Lake Ontario, in general concentrations of PFAS observed in core samples closely follow the increase in use along with an observable change due to regulation implementation in the 1970s for water protection. However some of the more water soluble PFAS were observed in deeper core layers than the time of production could account for, indicating potential diffusion within the sediment. Given the greater sedimentation rates in Lake Erie, it was hoped to observe in greater resolution changes since the mid 1990s. However, though some decrease was observed at some locations the results are not clear. Many cores in Lake Erie had clearly observable gas voids, indicative of gas ebullition activity due to biogenic production, there were also observable mussel beds that could indicate mixing by bioturbation of core layers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
<a href="/en/project/LM2015051" target="_blank" >LM2015051: Research Centre for Toxic Compounds in the Environment</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Environmental Pollution
ISSN
0269-7491
e-ISSN
—
Volume of the periodical
237
Issue of the periodical within the volume
June
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
396-405
UT code for WoS article
000431158900040
EID of the result in the Scopus database
2-s2.0-85042687077